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1. Introduction 

Embark Veterinary is a provider of genetic testing services for dogs. It provides a dog owner 

with a test kit that contains a swab, which allows the owner to perform a swab in the dog’s 

mouth to obtain salvia. The salvia contains a dog’s DNA, which is extracted and applied to a 

microarray chip for analysis. The microarray is a silicon chip which consists of a number of 

microscopic chemical probes, and each probe detects a binary genetic state at a specific position 

in a dog’s genome and fluorescing a certain color that depends on the identified state. 

 

The color and intensity are captured by a camera and then digitized into a pair of floating-point 

numbers between 0 and 1. In this case, they are called b_allele_frequency and log_r_ratio in the 

raw dataset. With this pair of data, it can be classified into 3 genetic states; they are at risk, 

carrier or free from a disease. We study this raw dataset that contains around 4000 data points, 

build and compare different classification models that can classify each data point into a specific 

genetic state. 

 

2. Problem 

The DNA from the swab is applied to a genotyping array and stained with fluorescent tags; then, 

the array will be analyzed to determine whether a dog is at risk, or a carrier or free from a 

specific disease. The problem is the same DNA array can be assessed with multiple methods; 

some methods are more accurate but cost more, while some methods are less accurate but cost 

less.  

 

3. Goal  

We develop supervised featurization and classification models that translate the raw microarray 

data into health risk/phenotype status; then, we predict the health risk/phenotype status for new 

raw data based on the model. We also explore quantifying confidence to support active learning. 

 

4. Outlines of Process Steps 

First, we explore the data by using bar charts and scatterplots to see how the raw data is 

distributed, which helps us visualize whether the data has outliers or not, and determine if the 

class imbalance issue exists in the dataset. Based on this observation, we do data cleanup by 



removing outliers, and then try different classification models. Finally, we use F1-macro score as 

our metric to choose the best modeling method for the raw data. 

 

 
Fig. 1 Outlines of process steps 

 

5. Exploratory Data Analysis 

First, we explore a classified genotype dataset. This dataset contains about 4000 data points from 

16 microscopic chemical probes; for each probe, each data point is a binary genetic state such as 

AA, GG, GA. The binary state is derived from two floating point numbers we mentioned above. 

A partial of the dataset is shown below. 

 

 
Fig. 2 Binary genotype from each probe from each dog 

 

We use a bar chart to visualize how each genotype is distributed for each probe. 

 

 
Fig. 3 Genotype distribution for each probe 



 

The distribution of each genotype for each probe is not balanced. Since we are going to use 

classification models to classify and predict these genotype labels, the imbalanced data can pose 

a challenge for classification models, because these models are built based on the assumption 

that each class has an equal distribution of data samples. If one class has a significantly small 

number of data samples, the predictive performance for this class will be lower because this 

minority class is more important to the model and hence, sensitive to the classification error. At 

the end of this report, we will explore more for class imbalance and methods to overcome this 

issue. 

 

In addition to the genotype dataset, we have another raw genotype dataset. This dataset consists 

of floating numbers ranging from 0 to 1; they are b_allele_frequency and log_r_ratio, which are 

the raw data we mentioned above. This dataset has more than 60000 entries; each data point is 

captured at a specific location on the microarray. There are 16 different genotypes, which are the 

ones we see in the classified genotype dataset above. A snippet of this dataset is shown below. 

 

 
Fig. 4 Raw genotype data from each probe from each dog 

 

Notice both the raw genotype dataset and the classified genotype dataset has a short_id column 

where each id represents a dog. If we merge these two datasets, we get the following. 

 

 
Fig. 5 Merged dataset based on raw genotype dataset and classified genotype dataset 

 

Then, we use a scatter plot to visualize how each pair of raw data point is distributed for each 

probe. 

 



 
Fig. 6 Scatter plot for raw genotype distribution for each probe 

 

We can see there are mainly three clusters in each plot, and each cluster is classified by a genetic 

state. Since the classification results are manually verified by a researcher. We can treat this 

merged dataset as a training and testing dataset, build classification models to predict a dog’s 

genetic state based on the raw data from the probe directly. 

 

However, like other data analytics projects, we need to do a cleanup for the dataset. Take a look 

at one scatter plot for one probe, although we can see tree types of classes, there are quite a few 

outliers in the dataset. For example, while most data points are classified as GG shown on the far 

right of the graph, there are some points classified as GG but are located at the far left where the 

class AA is located. Hence, in order to reduce the impacts from those outliers when we are doing 

classification modeling, we have to remove outliers for each class for each probe. We will 

investigate the impact of outliers in later sections; but for now, we build classification models 

using the raw data as is. 

 



 
Fig. 7 Scatter plot showing some outliers  

 

6. Data Preparation 

We study the raw data from a probe called: chrX_56324668. The choice of this probe is entirely 

random. We like to demonstrate the workflow and our findings; then, apply the same methods to 

other probes. First, we filter down the data related to chrX_56324668 in the pre-classified 

genotype dataset, then, we merge it with the raw genotype dataset based on the short_id column. 

A snippet of this merged dataset is shown below. 

 

 
Fig. 8 A snippet of a merged dataset for chrX_56324668 

 

We also plot a bar chart to see how the three genotype classes are distributed. The GG class 

outnumbers the other classes. This is one issue we want to keep in mind when building 

classification models. Later in the report, we will explore other methods to tackle the issue of 

imbalanced data. 

 

 

 
Fig. 9 Class imbalance check 

 



Separation of Training and Testing Data 

We allocate 70% of the data for training and 30% of the data for testing. 

 

7. Classification Models 

 

7.1 Model Overview 

We explore the following classification methods: multi-nominal logistic regression, k-NN, SVM 

and Random Forest. Every classification model has its pros and cons. The multinomial logistic 

regression is used when we have a categorical dependent variable with two or more classes. In 

our case, we have three genotype classes. Multinomial logistic regression is similar to logistic 

regression, except that logistic regression can only classify binary classes such as 0 or 1, Yes or 

No, and etc. If the boundary cannot be linearly separated, we can use SVM along with non-linear 

RBF kernel method to do classification. If the training data is too noisy, meaning the dataset 

contains some outliers, we can use k-NN method because it is robust to noisy training data; 

however, we need to tune the parameter K, which is the number of nearest neighbors, and also 

choose the type of distance to be used for k-NN. Random Forest consists of a group of Decision 

Trees, where each tree consists of decision branches to separate data. Random Forest can handle 

categorical features very well as well as high dimensional data with a large amount of training 

data. 

 

7.2 Metric used for Model Evaluation 

One of the most important things during model evaluation is to choose an appropriate evaluation 

metric. Common evaluation metrics include but not limited accuracy, precision, recall, weighed 

average, and so on. When dealing with multi-classes classification project, the F1 score is 

commonly used. First, we demonstrate a simple example of how F1-micro and F1-macro score 

compares. 

 

Suppose we have a confusion matrix with three classes; the values are the diagonal line are total 

number of classes predicted correctly, and all other values means incorrect predictions. 

 

  Predicted 

Actual 

 AA AG GG 

AA 2 7 2 

AG 9 1 2 

GG 1 2 50 

 

Then, we can calculate True Positive, False Positive and False Negative. 

 

Actual 

 
True Positive 

TP 

False Positive 

FP 

False Negative 

FN 

AA 2 10 9 

AG 1 9 11 

GG 50 3 3 



 

To calculate a F1 score, we need to calculate precision and recall first. Precision calculates how 

many predicted positive cases are truly positive. The equation is: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑖𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall calculates of all the actual positive cases, how many of them are predicted to be positive 

correctly. The equation is: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Then, F1 score is calculated as: 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 + 0.5(𝐹𝑃 + 𝐹𝑁)
 

 

Hence, we have the following results: 

 

Actual 

 
True Positive 

TP 

False Positive 

FP 

False Negative 

FN 
Precision Recall F1 score 

AA 2 10 9 0.167 0.181 0.173 

AG 1 9 11 0.1 0.083 0.091 

GG 50 3 3 0.943 0.943 0.943 

 

With the F1 score, we can calculate F1-macro and F1-micro score. The macro-averaged F1 score 

is computed by taking the arithmetic mean (aka unweighted mean) of all the per-class F1 scores. 

 

𝐹1 − 𝑚𝑎𝑐𝑟𝑜 𝑠𝑐𝑜𝑟𝑒 =  
∑ 𝐹1

𝑛
 

 

Actual 

 

True 

Positive 

TP 

False 

Positive 

FP 

False 

Negative 

FN 

F1 

score 
F1-macro score 

AA 2 10 9 0.173 0.173 + 0.091 + 0.943

3
= 𝟎. 𝟒𝟎𝟐 

AG 1 9 11 0.091 

GG 50 3 3 0.943 

 

On the other hand, F1-micro score is derived by counting the sums of the True Positives (TP), 

False Negatives (FN), and False Positives (FP). We first sum the respective TP, FP, and FN 

values across all classes and then plug them into the F1 equation to get our F1-micro score: 

 



Actual 

 

True 

Positive 

TP 

False 

Positive 

FP 

False 

Negative 

FN 

F1-micro score 

AA 2 10 9 53

53 + 0.5(22 + 23)
= 𝟎. 𝟔𝟏𝟐 

AG 1 9 11 

GG 50 3 3 

Total 53 22 23 

 

As we can see, the F1-micro score is higher than the F1-macro score. The micro averaging 

computes the proportion of correctly classified cases out of all cases. 

 

The purpose of doing the calculations is to show how different metrics can give different results. 

If not careful, the model evaluation can be misleading. In our case, we have a dataset with 

imbalanced classes, each class is equally important to be predicted correctly. Hence, we want to 

treat all classes equally; therefore, F1-macro score is preferred, and it is the metric we use for 

model evaluation. 

 

7.3 Multi-nominal Logistic Regression 

Logistic regression is a supervised classification algorithm. It is used to calculate the probability 

of a binary event, such as 1 or 0, Yes or No, etc. For example, in a binary class of 0 and 1, if the 

predicted probability of one event is greater than a common default value, 0.5, that event will be 

classified as 1. Multi-nonnominal Logistic Regression is an extension of Logistic Regression, it 

can handle more than two types of classes. In our case, we have three genotypes to classify for a 

specific probe. The package we use is LogisticRegression() from scikit-learn. Both the confusion 

matrix for training and testing data is shown below. 

 

 
f1 macro score for training dataset with tuning is: 

99.78% 

 
f1 macro score for testing dataset with tuning is: 

98.24% 
Fig. 10 Confusion matrix for training and testing data using Multi-nominal Logistic Regression 

 

In a confusion matrix, the values on the diagonal lines mean the number of data points are 

correctly classified by the algorithm. In this case, the Multi-nominal Logistic Regression achieve 

a F1-macro score of 99.78% on the training dataset and 98.24% on the testing dataset. We also 

plot a boundary plot for a better visualization. 



 

 
Fig. 11 Decision boundary for Multi-nominal Logistic Regression on testing data 

 

The boundary plot gives a better visualization which shows how each testing data point is 

classified into each boundary. Because Logistic Regression is a linear model, it cannot handle 

non-linearity in the dataset. If two clusters of data are not well separated, Logistic Regression 

may incorrectly classify data points at the boundaries. In the boundary plot above, we see that the 

boundaries are linear. Some data points labeled as GG are mis-classified. This is also due to 

outliers we mentioned before. Overall, most data points are correctly classified. 

 

7.4 k-NN 

k-NN is a simple supervised learning algorithm. It makes no assumptions because it simply 

calculates the distance between two data points for all the data on a graph; then, it adds a paired 

of the calculated distance and the index of the data point to an ordered collection. Finally, sort 

the collection of distances and indices from smallest to largest. Depending on the number of k, 

each data point will be labeled with a k value, which becomes our class. 

 

There are two main drawbacks from k-NN, which are relevant to the training data we have. k-

NN is sensitive to outliers and imbalanced data. Since it’s a distance-based algorithm, outliers in 

the dataset can be misclassified in most cases. In terms of an imbalanced dataset, if most data 

points belong to one class, then, the model will give a lot of preference to that class. As a result, 

the data points in the minority class will get misclassified. 

 

The package we use is KNeighborsClassifier() from scikit-learn. Both the confusion matrix for 

training and testing data is shown below. 

 



 
f1 macro score for training dataset with tuning is: 

99.50% 

 
f1 macro score for testing dataset with tuning is: 

97.73% 
Fig. 12 Confusion matrix for training and testing data using k-NN 

 

In this case, k-NN also achieves a higher F1-macro score for both training and testing data 

points. The decision boundary plot also confirms this. 

 

 
Fig. 13 Decision boundary for k-NN on testing data 

 

Since k-NN calculates the distance between two points, the formula used for calculating the 

distances can be nonlinear; hence, compared to Multi-nominal Logistic Regression, the decision 

boundaries at some outliers are nonlinear, as k-NN tries to best fit those points to their individual 

class. Overall, k-NN correctly classifies most data points. 

 

7.5 SVM 

The idea behind SVM is to create a separation line or a hyperplane that separates two class of 

data points. SVM identifies points that are close to a separation line, the points are called Support 

Vectors; SVM will then compute the distance between the line and each support vector. This 

distance is called margin. The goal is to find a separation line or a hyperplane that can achieve a 

maximum margin possible. 



 

The package we use is SVC() from scikit-learn. Both the confusion matrix for training and 

testing data is shown below. 

 

 
f1 macro score for training dataset with tuning is: 

99.29% 

 
f1 macro score for testing dataset with tuning is: 

98.36% 
Fig. 14 Confusion matrix for training and testing data using SVM 

 

SVM by far has the highest F1-macro score; but the gain over the previous two models is 

negligible. One of the advantages of SVM is it can fit high dimensional training data with a clear 

margin of separation. In our case, though we don’t have a high dimensional data, the separation 

of each class in the training data is clear, making it easy for SVM to classify. However, one of 

the drawbacks of SVM is that it is sensitive to outliers, and with its nonlinear kernel method, 

SVM will try to fit those outliers in the training dataset, causing misclassification or overfitting. 

The boundary plot for the testing data is shown below. 

 

 
Fig. 15 Decision boundary for SVM on testing data 

 



The decision boundaries from SVM exhibit a more pronounced nonlinearity at some outliers; in 

other words, it tries to fit those outliers that are far away from the majority of the data, in this 

case, the GG class. That is the reason why we have to remove outliers for SVM. In the later 

section, we will explore and see if this issue can be improved. 

 

7.6 Random Forest 

Random Forest is a tree-based machine learning algorithm that leverages the power of multiple 

decision trees for making decisions. Random Forest consists of numerous decision trees, and 

each decision tree consists of decision nodes, which can be a continuous or categorical variable 

used to separate the data points. This node creates two branches, and those branches become leaf 

nodes, which further be used to create additional branches based on additional criteria. The risk 

is obvious as the tree can grow too deep, causing overfitting. 

 

The package we use is RandomForestClassifier() from scikit-learn. Both the confusion matrix for 

training and testing data is shown below. 

 

 
f1 macro score for training dataset with tuning is: 

99.89% 

 
f1 macro score for testing dataset with tuning is: 

98.11% 
Fig. 16 Confusion matrix for training and testing data using Random Forest 

 

Random Forest can achieve a very high F1-macro score, and the mis-classified data points comes 

from outliers. The decision boundary plot demonstrates as well. 

 



 
Fig. 17 Decision boundary for Random Forest on testing data 

 

7.7 Hybrid Classification 

The above classification algorithms use a single model from training data. Hybrid classification 

employs basic classification algorithms for model induction and for data preprocessing. 

Misclassification instances are usually considered to be noise, yet those still may carry useful 

information for identifying the class values of some other instances. We will be using hybrid 

classification and use training set to build 3 different models and testing set is classified by one 

of the classification models 

 

7.8 Summary so far 

We apply four classification modeling method to classify genotypes using original data without 

the removals of any outliers. All models can achieve a very high F1-macro score. SVM has the 

highest score. 

 

Table 1: F1-macro scores for four models 

Model Name F1 macro score 

Multi-nominal Logistic 

Regression 

98.236152 

k-NN 97.728181 

SVM 98.357112 

Random Forest 98.114167 

 

 

 

 

 

 



Below is a grand summary of F1-macro scores for all four models and 16 probes. 

 

Table 2: F1-macro scores for all models and probes 

Model Name 

Multi-nominal 

Logistic Regression 

(%) 

k-NN 

(%) 

SVM 

(%) 

Random Forest 

(%) 

chrX_10047369 98.02 98.49 98.51 98.32 

chrX_10062232 99.83 99.73 99.73 99.80 

chrX_104108957 100.00 99.78 99.34 99.79 

chrX_1428432 99.74 98.97 99.61 99.74 

chrX_15178873 96.10 94.45 95.43 97.72 

chrX_30915190 95.64 94.32 93.42 95.49 

chrX_56324668 98.24 97.73 98.36 98.11 

chrX_6581086 99.59 99.53 99.53 99.63 

chrX_74859485 99.81 99.39 99.81 99.81 

chrX_86333309 99.82 99.78 99.38 99.82 

chrX_9396833 100.00 99.91 99.91 100.00 

chrX_98838845 96.74 93.26 92.31 94.71 

EMB_chr12_5417390a 99.63 99.76 99.88 100.00 

EMB_chr14_13726596a 99.88 99.76 99.64 99.76 

EMB_chr27_38868881a_dup 99.76 100.00 100.00 100.00 

EMB_chr9_4188663new 97.03 97.90 96.31 97.14 

 

Models with the highest F1-macro scores are highlighted. Multi-nominal Logistic Regression 

and Random Forest can marginally outperform other models, but we notice that Multi-nominal 

Logistic Regression is much faster to run for this dataset. Hence, we would recommend Multi-

nominal Logistic Regression. 

 

7.9 Outlier Removals 

Our initial runs are based on raw data with outliers. As we have mentioned several times that 

outliers have impacts on classification models. Our next steps are to remove outliers and re-fit all 

models. The widely used formulas for calculating outliers are as followed: 

 

𝐿𝑜𝑤 = 𝑄1 − 1.5 × 𝐼𝑄𝑅 

𝐻𝑖𝑔ℎ = 𝑄3 + 1.5 × 𝐼𝑄𝑅 

 

where Q1 and Q3 is calculated as: 

𝑄1 = 𝑞1(𝑛 + 1) 

𝑄3 = 𝑞3(𝑛 + 1) 

 

where q1 and q3 are the quantiles and n is the total number of data points. Before calculating Q1 

and Q3, the value of each data point is ranked from the smallest to the largest. In our case, we 

pick q1 = 0.01 and q3 = 0.95 because we are conservative about removing outliers as we don’t 



want to lose too much data points. When q1 = 0.01, it means 1% of the data is below the position 

0.01(n+1) and 1% of the data is above the position 0.01(n+1). IQR represents interquartile range, 

it is the difference between Q3 and Q1. Any data outside of the low and the high range will be 

purged. A comparison of before/after outlier removals is shown below for all probes. 

 

 



 
 

 
 



 
 

 



 

 
 

 



 

 
Fig. 18 A comparison of before/after outlier removals 

 

From all the scatter plots above, the data becomes much cleaner after outliers are removed. Our 

next step is to re-run all four models based on the cleaned dataset. 

 

7.10 Model Re-runs 

After we re-run the models, below is a grand summary of F1-macro scores for all models for all 

probes. 

 

Table 3: F1-macro scores for all models and probes using cleaned dataset 

Model Name 

Multi-nominal 

Logistic Regression 

(%) 

k-NN 

(%) 

SVM 

(%) 

Random 

Forest 

(%) 

chrX_10047369 100.00 100.00 100.00 100.00 

chrX_10062232 100.00 100.00 100.00 100.00 

chrX_104108957 100.00 100.00 100.00 100.00 

chrX_1428432 100.00 100.00 100.00 100.00 

chrX_15178873 99.42 98.29 98.29 98.29 

chrX_30915190 99.04 99.53 99.52 99.04 

chrX_56324668 100.00 100.00 100.00 100.00 

chrX_6581086 100.00 100.00 100.00 100.00 

chrX_74859485 100.00 100.00 100.00 100.00 



chrX_86333309 100.00 100.00 100.00 100.00 

chrX_9396833 100.00 100.00 100.00 100.00 

chrX_98838845 100.00 100.00 100.00 100.00 

EMB_chr12_5417390a 100.00 100.00 100.00 100.00 

EMB_chr14_13726596a 100.00 100.00 100.00 100.00 

EMB_chr27_38868881a_dup 100.00 100.00 100.00 100.00 

EMB_chr9_4188663new 100.00 100.00 100.00 100.00 

 

The effect of outlier removal is quite evident. All models achieve a 100% F1-macro scores 

except for test data from two probes. This confirms that outliers do have influences on our 

modeling, and we highly recommend to remove those outliers before attempting classification 

models. 

 

7.11 Class Imbalance and Methods to Overcome 

Class imbalance exists when the number of samples from one class is larger than other classes. 

The class that has a larger number of samples is called the majority class, while the class that has 

fewer samples are called the minority class. Take the probe chrx_56324668 for example; the GG 

class outnumbers both AA an AG. The context of GG is risk free, and the contexts for AA and 

AG are at risk and potential carrier of a disease, respectively. In the medical field, most cases are 

returned as negative (not detected), while only a few cases are detected as positive. Hence, this 

genotype classification problem, to some extent, reflects the real-world scenario. 

 

 
Fig. 19 Class imbalance in data from one probe 

 

The class imbalance issue also keeps us cautious about choosing an appropriate model evaluation 

metric we have discussed above. In our case, we primarily avoid using Accuracy. For instance, if 

we have a total of 100 cases, where 99 cases are classified to be negative but one case is 

incorrectly classified as negative; the accuracy score will be 99%. This result is misleading 

because it’s so costly that we fail to classify the one particular case correctly. 

 

One commonly used method to tackle imbalanced data is to resample data. There are two 

resampling methods: Over-sampling and Under-sampling. Over-sampling creates synthetic 

samples for the minority class while under-sampling removes or merge samples in the majority 

class. In this study, we are going to explore one commonly used over-sampling method called 

SMOTE (Synthetic Minority Oversampling Technique), and one hybrid method that combines 

over-sampling and under-sampling at the same time. 



 

SMOTE works by selecting random samples that are close in the feature space, drawing a line 

between the samples in the feature space and making a new sample as a point along that line. 

The package we use is SMOTE() from imblearn. A scatter plot for before/after over-sampling is 

shown below. 

 

 
before SMOTE ({'G G': 2179, 'A G': 402, 'A A': 39}) 

 
after SMOTE ({'G G': 2179, 'A G': 2179, 'A A': 2179}) 

Fig. 20 Original data vs over-sampled data (SMOTE) 

 

The over-sampled data is based on the training data without outliers. The scatter plot shows that 

the boundary among each genotype is clean; as we mentioned above, SMOTE works by 

interpolating a new point between two sample points. The effect is obvious for the AA class, 

where new data points are generated, and they fill in the ‘gap’. We apply SMOTE to data for all 

probes, re-run all models and below is the F1-macro score matrix. 

 

Table 4: F1-macro scores for all models and probes using balanced dataset with 

SMOTE method 

Model Name 

Multi-nominal 

Logistic Regression 

(%) 

k-NN 

(%) 

SVM 

(%) 

Random 

Forest 

(%) 

chrX_10047369 100.00 100.00 100.00 100.00 

chrX_10062232 100.00 100.00 100.00 100.00 

chrX_104108957 100.00 100.00 100.00 100.00 

chrX_1428432 100.00 100.00 100.00 100.00 

chrX_15178873 99.42 98.29 98.29 99.42 

chrX_30915190 99.04 99.53 98.62 99.04 

chrX_56324668 100.00 100.00 100.00 100.00 

chrX_6581086 100.00 100.00 100.00 100.00 

chrX_74859485 100.00 100.00 100.00 100.00 

chrX_86333309 100.00 100.00 100.00 100.00 

chrX_9396833 100.00 100.00 100.00 100.00 

chrX_98838845 100.00 100.00 100.00 100.00 

EMB_chr12_5417390a 100.00 100.00 100.00 100.00 



EMB_chr14_13726596a 100.00 100.00 100.00 100.00 

EMB_chr27_38868881a_dup 100.00 100.00 100.00 100.00 

EMB_chr9_4188663new 100.00 100.00 100.00 100.00 

 

Based on the results above, we don’t see any improvement for F1-macro score, which is the 

same as what we get without SMOTE. We suspect each genotype class is already well separated 

in the original raw data. However, we still want to explore the hybrid method, which combines 

both over-sampling and under-sampling algorithms together. 

 

The hybrid method is called SMOTE + Tomek Links. The goal of this method is to cleanup 

overlapping data points from different classes. First, SMOTE is applied to oversample the 

minority class, this may create synthetic points that are invading the spaces of other classes. 

Hence, what Tomek Links will do next is to identify nearest pairs of data points that are in 

different classes and remove one or both of points in the pairs that helps increase class separation 

near the decision boundaries. Below is a scatter plot comparing before/after SMOTETomek 

method, and the F-macro score matrix. 

 

 
before SMOTETomek ({'G G': 2179, 'A G': 402, 'A A': 39}) 

 
after SMOTETomek ({'G G': 2179, 'A G': 2179, 'A A': 2179}) 

Fig. 21 Original data vs over-sampled data (SMOTETomek) 

 

Table 5: F1-macro scores for all models and probes using balanced dataset with 

SMOTE method 

Model Name 

Multi-nominal 

Logistic Regression 

(%) 

k-NN 

(%) 

SVM 

(%) 

Random 

Forest 

(%) 

chrX_10047369 100.00 100.00 100.00 100.00 

chrX_10062232 100.00 100.00 100.00 100.00 

chrX_104108957 100.00 100.00 100.00 100.00 

chrX_1428432 100.00 100.00 100.00 100.00 

chrX_15178873 99.42 98.29 98.29 99.42 

chrX_30915190 99.04 99.53 98.62 99.04 

chrX_56324668 100.00 100.00 100.00 100.00 

chrX_6581086 100.00 100.00 100.00 100.00 



chrX_74859485 100.00 100.00 100.00 100.00 

chrX_86333309 100.00 100.00 100.00 100.00 

chrX_9396833 100.00 100.00 100.00 100.00 

chrX_98838845 100.00 100.00 100.00 100.00 

EMB_chr12_5417390a 100.00 100.00 100.00 100.00 

EMB_chr14_13726596a 100.00 100.00 100.00 100.00 

EMB_chr27_38868881a_dup 100.00 100.00 100.00 100.00 

EMB_chr9_4188663new 100.00 100.00 100.00 100.00 

 

We still don’t see any difference between SMOTE and SMOTETomek. We still suspect that the 

original dataset with outliers removed has clear boundaries between each class, and data 

resampling may not show its power for this scenario. 

 

8 Classification and Prediction for Health State based on Data Related to Chimerism 

 

8.1 Introduction 

So far, we explored 4 types of classification models to classify three genotypes for 16 probes. 

Now, we want to see if we apply the same methods to predict the health states based on the data 

related to chimerism. 

 

8.2 Data Preparation 

First, we filter data related to chimerism only in the raw genotype dataset. The ‘SNP name’ 

column should have string values starting with ‘chrX’. 

 

 
Fig. 22 Filter data related to chimerism in raw genotype dataset 

 

Next, in the health state dataset, we want to filter the ‘health_id’ column whose values are equal 

to 999999.  

 

 
Fig. 23 Filter data related to chimerism in health state dataset 

 

Finally, we combine these two filtered datasets based on ‘short_id’ column. 



 

 
Fig. 24 Combined dataset 

 

8.3 Exploratory Data Analysis 

Below is a bar chart which shows that the class imbalance exists for this filtered dataset. Besides, 

a scatterplot shows how each class is distributed based on the b_allele_frequency and 

log_r_ratio. 

 
 

 
Fig. 25 Bar chart and scatterplot for raw data related to chimerism 

 

By looking at the scatterplot, we foresee it can pose a challenge for classification models. The 

reason is the data from two classes are mingled together, which can be hard to draw a decision 

boundary between them. 

 

 

 

 



8.4 Model Evaluation 

We apply four classifications methods we used for predicting the genotypes above, and below 

are the confusion matrices and boundary plots for all four models. 

 

 
f1 macro score for testing dataset with tuning is: 

42.66%  

 
f1 macro score for testing dataset with tuning is: 

72.87%  

 
f1 macro score for testing dataset with tuning is: 

59.70%  



 
f1 macro score for testing dataset with tuning is: 

73.00% 
 

Fig. 26 Model evaluation results for four classification models 

 

Table 6: F1-macro scores for four models 

Multi-nominal Logistic 

Regression 

(%) 

k-NN 

(%) 

SVM 

(%) 

Random 

Forest 

(%) 

42.66 72.87 59.70 73.00 

 

Compare the above results with the ones we obtained from genotype prediction, the F1-macro 

scores are significantly lower. Also, we don’t see a clear separation between two classes in all 

boundary plots; particularly with the multi-nominal logistic regression being the worst. Hence, 

while Random Forest has the highest F1-macro score among all models, we still need to be 

cautious to use it to predict a new value. 

 

8.5 Class Balancing and Model Re-run 

In the previous section, we discussed about class imbalance issue in the raw genotype dataset; 

the same issue still exists for raw data related to chimerism. So, we decide to apply class balance 

method and re-run the models to see if there are any differences or improvements. Below is a 

scatter plot comparing before and after class balance using SMOTETomek method. 

 

  



before SMOTETomek ({'clear': 596, 'at risk': 168}) after SMOTETomek ({'clear': 541, 'at risk': 541}) 

Fig. 27 Before and after class balance 

 

Because the two classes are mixed together, SMOTETomek shows its power as it tires to reduce 

the samples from the majority class while artificially increasing the samples in the minority 

class. We can see the number of samples in class labeled with ‘clear’ are reduced while the 

number of samples in class labeled as ‘at risk’ are increased. 

 

Below are the confusion matrices and boundary plots for all four models based on balanced data. 

 

 
f1 macro score for testing dataset with tuning is: 

56.67%  

 
f1 macro score for testing dataset with tuning is: 

68.97%  



 
f1 macro score for testing dataset with tuning is: 

66.32% 
 

 
1 macro score for testing dataset with tuning is: 

72.68%  
Fig. 28 Model evaluation results for four classification models with balanced data 

 

Table 7: F1-macro scores for four models using balanced data 

Data Input Multi-nominal Logistic 

Regression 

(%) 

k-NN 

(%) 

SVM 

(%) 

Random 

Forest 

(%) 

Imbalanced data 42.66 72.87 59.70 73.00 

Balanced data 57.20 68.97 66.32 72.68 

 

After the data balancing method is applied, the boundaries between two classes are more 

pronounced, and f1-macro scores also show some improvement as well, with Random Forest still 

outperforms other models and Multi-nominal Logistic Regression is still the worst. However, 

considering data samples from two classes mix so closely, we would be cautious about using 

Random Forest to predict a class for a new pair of raw data. 

 

8.6 Possible Reasons for Poor Model Performance 

The study we did above is certainly a challenge; in contrast to predicting genotypes for 

individual probe, we tried to predict a health state based on all data combined that is related to 

chimerism. We used a scatterplot to demonstrate how the two class, ‘at risk’ and ‘risk free’, are 



mixed. Let’s make additional scatterplots that separate the two classes. (For a complete list of 

scatterplots, please refer to Jupyter notebook) 

 

 
Fig. 29 Scatterplot for dogs identified at risk 

 

 
Fig. 30 Scatterplot for dogs identified as risk free 



 

The first scatterplot shows dogs identified as ‘at risk’ based on a group of probes related to 

chimerism, and the second scatterplot shows dogs identified as ‘risk free’ based on the same 

group of probes. Now we can see why the previous classification models didn’t perform well on 

those raw training data. The raw data for these two classes are overlapping with each other, 

meaning the raw values of b_allele_frequency and log_r_ratio for ‘at risk’ and ‘risk free’ are 

close to each other. There is no distinct discrepancy between these two classes. That’s why we 

still give a warning about the Random Forest model even though it has above 70% F1-macro 

score, because the raw data itself is not too good for building classification models. 

 

9 Conclusion 

With different model analysis, we were able to classify the data to different classes “at risk” and 

“risk free” based on the probes data in relation to chimerism. We also did notice some overlap on 

the classes while examining the data. 

 

A priori knowledge to draw some inferences based of on the raw values of b_allele_frequency 

was helpful and can be categorized by the in-depth study. Application of the more advanced 

classification and different hybrid combinations model approach to a larger dataset could be the 

next steps for advance study and future work. With hybrid model complexity, the problem like 

overfitting will be expected to emerge after application. 
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